CALCULATING THE CALIBRATION CURVES
OF HIGH-PRESSURE DEVICES WITH PROFILED
ANVILS
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A determination of the calibration curves of high-pressure devices is presented on the basis of
an approximate calculation of the stressed state of points in the median plane {(with respect to
height) of a thin layer of an ideal generalized plastic material, compressed between rigid pro-
filed anvils. A specific relationship is derived for the angle between the greatest principal
stress and the median plane as a function of height and it is assumed that slip, retardation, and
stagnation zones occur in the contact region. Recommendations are made in order to determine
the boundaries of the stagnation zone for the case of profiled anvils. The difference between
the results of the calculation and experimental data is no greater than 8%.

In a number of papers {1, 2] devoted to the calculation of calibration curves for high-pressure devices
of various kinds, the original stress equation was taken in a form based on the theory of plastic flow (yield) as
applied to substances moving over rigid surfaces [3],
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where p and 7, are, respectively, thepressure inthe compressed material and the tangential frictional stress on
the contact surface; H is the thickness of the compressed layer, being a smoothly ( and very slightly) varying
function of the coordinates.

On practically the whole of the contact surface (except for the central and boundary zones, the dimen-
sions of which were of the order of the thickness of the compressed material) the frictional contact stresses
were taken as equal to the shear yield stress of the compressed material, thig stress being a function of pres-
sure, i.e., To =K(p). In order to allow for effects arising from the deformation of the plungers (pistons), the
height of the compressed material was expressed in the form of a sum

el = 20{r).

where w(r) is the deformation of the plungers and h is the height of the compressed layer without taking ac-
count of deformation.

The pressure in the center of the compressed layer was calculated up to 55 kbar in [2], and the results
were in excellent agreement with experiment. According to earlier data [1] for pressures of over 60 kbar the
results of such calculations exceed the experimental values, and this difference increases with rising pressure.
One of the reasons for the discrepancy may be that the actual influence of the deformation of the plungers on
the flow of the compressed layer is more complicated than a simple increment in the height of the compressed
layer, as implied by Eq. (1) [1, 2].

In the papers indicated in the foregoing discussion, apparatus with only a very thin compressed layer
(<1 mm) was the subject of the calculations. Very slight deformations of the plungers may have a considerable
influence on the character of the flow in the compressed material; this influence was not adequately taken into
account in the papers in question — hence the difference between the computed and experimental results. In
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other devices [4, 5] with profiled anvils and comparatively large transverse dimensions of the working space,
the thickness of the compressed layer in the center of the apparatus is over 10 mm; the influence of the defor-

mation of the plungers in these devices on the character of the flow in the compressed layer is much less se-
vere than in devices with plane anvils.

For pressures between 0 and 100 kbar we may reasonably expect fair agreement between the experi-
mental data and the results of the calculations for devices with profiled anvils, even without allowing for the
effects of the deformation of the plungers; this greatly eases the computing procedure.

In the earlier papers [1, 2] the calculation was applied to devices with plane anvils, since in the original
equation (1) the thickness of the compressed layer was a very slowly varying function of the coordinates. On
profiling the ends of the plungers the thickness of the compressed material changes by a factor of 2-3 times;
the character of the flow (and hence the pressure gradient) will then be considerably affected not only by the
thickness of the compressed layer, but also by the angle between the outflow direction and the contact surface.
Equation (1) is incapable of allowing for this effect.

As initial stress equation in this paper we shall use an equation derived from the differential equilibrium
equations, and shall consider that the state of stress in the compressed material is nonuniform in the direetion
in which the plungers approach one another; the character of this nonuniformity is determined by the form of
contact surface of the plungers.

The initial equation is derived on the assumption of axisymmetrical compression, The stressed state of
an axisymmetrically compressed solid is described by differential equations of equilibrium expressed in cy-
lindrical coordinates (r, 8, z), having the z axis along the direction of mutual approach of the plungers:

90,/0r + 9t,,/0z + (0, — og)/r=0; @)
d0,/0z + dt,,/0r + 1,,/r=0,

where oy, 0y, 05, Try are, respectively, the radial, circumferential, axial, and tangential components of the

stress tensor.

The directions of the components oy, 05, Tyy lie in the axial plane rz, and on the basis of Mohr's theory
may be expressed in the form of their well-known dependence on the average stress o (0 <0) in the plane of the
axial section and the angle @ made by the greatest principal stress in the axial plane with the positive direction
of the r axis:

6,=6 + K cos 2a; 0,=0 — K cos 2a; 1t,.=K sin 2a, (3)

where K isthe shear yield stress of the compressed material and o= (0, +0,) /2 is the average stress in the plane
of the axial cross section (rz).

Accepting the condition of complete plasticity (Haar—Karmdn) oy =0y =0, and a plastic mode of flow cor-
responding to the edge of the Tresca prism

0, — 0;=2K, (4)
we obtain an expression for the circumferential stress
gp=0 + K. (5)
The expressions (3) and (5) enable us to rewrite the system of equations (2) with four unknowns in the
form of a system of two equations with two unknown functions o and o :
do/dr=K siq 2 - 92a/9r — K cos 200 - 82a/dz + K(1 — cos 2a)/r — 6K dr cos 2 — 0K ‘9z sin 2a;

(6)
96/d2=8K/0z cos 2a — OK/r sin 20 — K sin 2a.92a/dz— K cos 2a-02a/dr — K sin 2a/r.

The analytical solution of both (2) and (6) in general form encounters serious difficulties of a mathemat-
ical nature; in solving applied problems it is therefore of no small importance to be in possession of approxi-
mate methods of solving the system (6).

In the majority of constructions of high-pressure apparatus, the compression is applied to materials
having a median plane perpendicular to the direction in which the plungers approach one another. The system
of equations (6) for points in the median plane becomes very much simpler on being expressed in a system of
coordinates in which the ré plane coincides with the median plane in question:
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o + K)lor= — Ko2a/0z, o — K)oz =0,
since in the median plane =0, 820/8r=0.

The resultant system of equations is equivalent to the one equation
o + K)or= — Kd2a/dz
with two unknowns o and a.

In order to find the unknown ¢ we must know the function &. From the boundary conditions we may de-
termine the quantity A by which the angle 2« varies on varying z from 0 to H/ 2,

A= — (arctg (7,/K,) — 2B),

where B=arctan 8/0r - (H/2) is the angle made by the tangent to the profile of the anvil with the positive di-
rection of the r axis and K¢ is the shear yield stress ofthe compressed material at iis contact with the plunger.

An unknown feature is the way in which the angle 2« varies from 0 to A as z varies from 0 fo H/2. In
this paper we shall express the mode of variation by means of a selected function 2¢=£(z). The form of the
selected function 2 =f(z) also determines the nonuniformity in the flow (yield) of the compressed material
along the z coordinate. The selected function 2o =f(z) should be such as to agree with existing solutions re-
lating to the problem of the compression of plastic solids.

In solving the problem of the compression of a strip of constant height a linear dependence of the shear
component on the coordinate z was obtained in [6], i.e.,

t,,=K22/H.

The linear dependence of the shear component on the z coordinate in the case of the compression of a strip of
constant thickness corresponds to a relationship between the angle 2o and the z coordinate of the form (2z/H),
i.e.,

20 == arcsin (2z/H). (7

Assuming that the angle 2& varies with z in accordance with the arcsin (2z/H) law for any inclinations
of the contact surface, we may express the function 20 =f(z) in the form

. arcsin (2z/ H) A . ~
200 = SR CH T IY) = 7y aresin (2z /H).
Evaluating the derivative
220, rY 2/H

oz AR YT— (2 AR

and substituting its value at z=0 into Eq. {7), we obtain the original equilibrium equation in stress form as
follows:

o + K)/or= — KIA(n/2)]2 H. (8)

For the compression of an ideal plastic material (K=const) between plane anvils, subject to the boundary con-
dition Tk =K, we have

A= — 7/2

and Eq. (8) in the form 8¢/0r=0p/dr =K2/H coincides with Eq. (1) of [3]. For the compression of an ideal
plastic material between the profiled ends of the plungers, subject to the same boundary condition g =K, Eq.
(8) becomes

80/or=0ap/or=Ki(n'2 — 28),n/212/H.

The final form of Eq. (8) is determined by the form of K(o) for the shear yield stress of the compressed
material.

In our present analysis, the expression for the shear yield stress of the compressed material is derived
from the concept of the generalized ideally plastic material, such as we take the compresged solid to be. The
concept of an ideally plastic generalized solid was introduced in [6] after considering the envelopes of the
Mohr circles for the greatest principal stresses. As envelopes of the Mohr circles we took straight lines in-
clined to the ¢ axis at an angle of p= —arctan 6 where & is the internal-friction coefficient of the compressed
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material. From purely geometrical considerations the expression for the shear yield stress K assumes the
following form:

K=K, cos p + ¢ sin p,

v

where K, is the shear yield stress at atmospheric pressure. The values of K; and p were determined from
the data presented in [7, 8].

Equation (8) may now be solved subject to the boundary conditions generally accepted in the theory of
the pressure treatment of metals, which are justified experimentally. On the free surfaces the normal and
tangential stresses are taken as equal to zero. On the contact surfaces we distinguish three zones, each having
its own characteristic laws governing the variation of the tangential frictional forces: a slip zone adjacent to
the free surface of the solid, in which the contact frictional force is determined by the Coulomb law (the tan-
gential stresses are proportional fo the normal stresses); a zone of retardation, in which the contact frictional
force is equal fo the shear stress of the compressed material in its limiting state (k=K cos p); a stagnation
zone at the point of flow separation, in which the contact stress falls to zero. The size of the end (slip) zone
in the absence of lubricant on the contact surfaces is of the order of the thickness of the compressed layer;
only a slight error is created by neglecting this zone and considering that the zone of retardation begins im-
mediately at the initial point of the contact surface. For the retardation zone Eq. (8) takes the form

d0.dr==1(K, cos p -~ 6 sin 0) {1 = sin )1(x/2 + p — 2B)/n/2] 2/H.

In the stagnation zone lying in the central part of the compressed solid we took the usual relationship for
the tangential forces of friction T =(r/r)K cos p, where r; is the coordinate corresponding to the beginning
of the stagnation zone. Equation (8) then takes the form

go N, cosp--asing 7o

r T ‘
aresin ['—- sin (T - p}] — 2f
2

or 1 --sinp a5l

On the basis of experimental data regarding the compression of materials between plane slabs it was
earlier [9] proposed that ry=H. In the case of profiled anvils it is difficult to establish the coordinates of the
beginning of the stagnation zone on the basis of the recommendations made in [9]. In the present analysis we
determined the beginning of the stagnation zone by comparing the displaced volume and the transmission ca-
pacity of the lateral surface for the value of r under consideration. The value of the displaced volume was
rrév, where v, is the rate of relative approach of the plungers in the pressure device; the transmission ca-
pacity of the lateral surface for the same value of r is 2rrHvy, where vy is the radial flow velocity averaged
with respect to height. If the displaced volume exceeds the transmission capacity for the value of r under
consideration (i.e., 7"1'2Vz > 2rrHvy), the compressed solid is embraced by the flow over its whole height and the
section under consideration lies outside the stagnation zone. In the opposite situation (rr?v, < 2rrHv,) the com-
pressed layer is not subject to the flow over its entire height, but only in the middle parts of the layer; this
cross section accordingly lies within the stagnation zone. The coordinates of the boundary of the stagnation
zone are determined by equating the displaced volume to the fransmission capacity of the lateral surface for
the value of r under consideration, i.e., wrgvz= 2rryHvp.

For regions of the compressed layer close to its central section we may take v~ v,. Hence in order to
determine the coordinates of the beginning of the stagnation zone it is sufficient to compare the area of the
cross section perpendicular to the direction of mutual approach of the plungers with that of the lateral surface
of the compressed layer for the same value of coordinate r. This comparison yields the following expression
for the coordinate of the boundary of the stagnation zone:
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= 2H(ry).

From the same considerations the coordinates of the boundary of the stagnation zone in the case of plane
flow are given by x, = H(xy); this agrees with the earlier recommendations [9] for the compression of material
by plane anvils. After determining the average stress ¢, all the components of the stress and pressure p=¢+
K/3 in the median plane of the compressed solid may be determined,

From the pressure distribution in the median plane of the compressed layer we may now determine the
required stress N and plot a calibration curve N =f(p,), where p, is the pressure in the center of the compressed
layer.

Experimental and theoretical results relating to the calibration curve of a particular form of the pres-
sure devices described in [4, 5], based on the equilibrium equation (4) expressed in stress form, are presented
in Fig. 1; we see that the difference between the experimental and theoretical calibration curves (curves 1 and
2, respectively) is no greater than 7-8% for pressures up to 90 kbar (the tests extending to 100 kbar), and this
may be regarded as satisfactory. The difference between calculation and experiment above 90 kbar may be
due to some effect of plunger deformation not taken into account in the present analysis.
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