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A de te rmina t ion  of the ca l ib ra t ion  cu rves  of h i g h - p r e s s u r e  devices  is p re sen ted  on the bas is  of 
an app rox ima te  calculat ion of the s t r e s s e d  s ta te  of points in the median plane (with r e s p e c t  to 
height) of a thin l aye r  of an ideal genera l i zed  p las t i c  ma te r i a l ,  c o m p r e s s e d  between r igid p r o -  
f l ied anvi ls .  A specif ic  re la t ionsh ip  is der ived  for  the angle between the g r e a t e s t  pr inc ipa l  
s t r e s s  and the median plane as  a function of height and it  is a s s u m e d  that  slip, re tardat ion ,  and 
s tagnat ion zones occur  in the contact  region.  Recommenda t ions  a r e  made in o rde r  to de te rmine  
the boundar ies  of the stagnation zone for  the case  of prof i led  anvils .  The di f ference  between 
the r e su l t s  of the calculat ion and expe r imen ta l  data is  no g r e a t e r  than 8%. 

In a number of papers [i, 2] devoted to the calculation of calibration curves for high-pressure devices 
of various kinds, the original stress equation was taken in a form based on the theory of plastic flow (yield) as 
applied to substances moving over rigid surfaces [3], 

@ CJ : 2 r  c H. (i) 

where  p and T c a re ,  r e spec t ive ly ,  the p r e s s u r e  in the c o m p r e s s e d  m a t e r i a l  andthe  tangential  f r ic t ional  s t r e s s  on 
the contact  sur face ;  H is the th ickness  of the c o m p r e s s e d  l aye r ,  being a smooth ly  ( and v e r y  slightly) vary ing  
function of the coord ina tes .  

On p rac t i ca l ly  the whole of the contact  su r f ace  (except for  the cen t ra l  and boundary zones,  the d imen-  
sions of which were  of the o r d e r  of the th ic lmess  of the c o m p r e s s e d  mate r ia l )  the f r ic t ional  contact  s t r e s s e s  
were  taken as equal to the shea r  yield s t r e s s  of the c o m p r e s s e d  m a t e r i a l ,  this s t r e s s  being a function of p r e s -  
sure ,  i .e . ,  r c =K(p). In o r d e r  to al low for  ef fec ts  a r i s ing  f rom the deformat ion  of the p lungers  (pistons), the 
height of the c o m p r e s s e d  m a t e r i a l  was e x p r e s s e d  in the fo rm of a sum 

I t : -  1~ - -  2to(r). 

where  c~(r) is the deformat ion  of the p lungers  and h is the height of the c o m p r e s s e d  l aye r  vdthout taking ac -  
count of  deformat ion .  

The p r e s s u r e  in the cen te r  of the c o m p r e s s e d  l ayer  was calcula ted up to 55 kbar  in [2], and the r e su l t s  
were  in excel lent  a g r e e m e n t  with exper iment .  Accord ing  to e a r l i e r  data [1] for  p r e s s u r e s  of over  60 kbar  the 
r e su l t s  of such ca lcula t ions  exceed the expe r imen ta l  va lues ,  and this d i f ference i n c r e a s e s  with r i s ing  p r e s s u r e .  
One of the r e a s o n s  for  the d i s c r epancy  m a y  be that  the actual  influence of the deformat ion  of the p lungers  on 
the flow of the c o m p r e s s e d  l aye r  is m o r e  compl ica ted  than a s imple  inc remen t  in the height of the c o m p r e s s e d  
l aye r ,  as  impl ied  by Eq. (1) [1, 2]. 

In the pape r s  indicated in the foregoing discuss ion,  appara tus  with only a ve ry  thin c o m p r e s s e d  layer  
(< 1 ram) was the subject  of the calculat ions.  Ve ry  sl ight  deformat ions  of the p lungers  m a y  have a considerable  
influence on the c h a r a c t e r  of the flow in the c o m p r e s s e d  ma te r i a I ;  this  influence was not adequately  taken into 
account  in the pap e r s  in question - hence the d i f ference  between the computed and exper imen ta l  resul t s .  In 
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other  dev ices  [4, 5] with p rof i l ed  anvi ls  and c o m p a r a t i v e l y  la rge  t r a n s v e r s e  d imensions  of the working space,  
the th ickness  of the c o m p r e s s e d  l aye r  in the cen te r  of the appara tus  is ove r  10 ram; the influence of the d e fo r -  
mat ion  of the p lungers  in these  devices  on the c h a r a c t e r  of the flow in the c o m p r e s s e d  l aye r  is  much less  s e -  
v e r e  than in dev ices  with plane anvi ls .  

F o r  p r e s s u r e s  between 0 and t00 kba r  we m a y  reasonab ly  expec t  fa i r  a g r e e m e n t  between the ex p e r i -  
menta l  data and the r e s u l t s  of the ca lcula t ions  for  dev ices  with prof i led  anvils ,  even without allowing for  the 
e f fec ts  of the deformat ion  of the p lungers ;  this  g r ea t l y  e a s e s  the computing p rocedure .  

In the e a r l i e r  p a p e r s  [1, 2] the calculat ion was applied to devices  with plane anvi ls ,  s ince in the or iginal  
equation (1) the th ickness  of the c o m p r e s s e d  l aye r  was a v e r y  slowly va ry ing  function of the coordinates .  On 
prof i l ing  the ends of the p lungers  the th ickness  of the c o m p r e s s e d  m a t e r i a l  changes by a f ac to r  of 2-3 t imes ;  
the c h a r a c t e r  of the flow (and hence the p r e s s u r e  gradient) will then be cons ide rab ly  affected not only by the 
th ickness  of the c o m p r e s s e d  l aye r ,  but a l so  by the angle between the outflow direct ion and the contact  sur face .  
Equation (1) is  incapable  of a l lowing for  this effect.  

As init ial  s t r e s s  equation in this pape r  we shall  use  an equation der ived  f r o m  the different ia l  equi l ibr ium 
equations,  and shall  cons ider  that  the s ta te  of s t r e s s  in the c o m p r e s s e d  m a t e r i a l  is nonuniform in the di rect ion 
in which the p lungers  approach  one another ;  the c h a r a c t e r  of this nonuniformity  is de te rmined  by the f o r m  of 
contact  su r face  of the p lungers .  

The init ial  equation is der ived  on the assumpt ion  of a x i s y m m e t r i c a l  compres s ion .  The s t r e s s e d  s ta te  of 
an a x i s y m m e t r i e a l l y  c o m p r e s s e d  solid is  de sc r ibed  by di f ferent ia l  equations of equi l ibr ium e x p r e s s e d  in cy-  
l indr ica l  coord ina tes  (r ,  0, z), having the z axis  along the d i rec t ion of mutual  approach  of the plungers.. 

Ocrr/Or + O~zlOz ~ ((r~ - -  ~e)/r=O; (2) 
O~lOz + Ow~JOr -I- w~Jr=O, 

where  err, cr 0 , Crz, l"rz a re ,  r e spec t ive ly ,  the radia l ,  c i r cumfe ren t i a l ,  axial,  and tangential  components  of the 
s t r e s s  t ensor .  

The d i rec t ions  of the components  ~r ,  ~z, Trz lie in the axial  plane rz ,  and on the bas i s  of Mohr ' s  theory  
m a y  be e x p r e s s e d  in the f o r m  of the i r  wel l -known dependence on the ave rage  s t r e s s  a (~ < 0) in the plane of the 
axial  sect ion and the angle a made  by the g r e a t e s t  p r inc ipa l  s t r e s s  in the axial  plane with the pos i t ive  d i rec t ion 
of the r axis: 

% = ~  +/ t "  cos "2a; c%=cr --  R" cos 2a; r~:=/l" sin 2a, (3) 

where  K i s t he  shea r  yield s t r e s s  of the c o m p r e s s e d  ma te r i a l  and ~ = (~r + ~ z ) / 2  is  the ave rage  s t r e s s  in the plane 
of the axial  c r o s s  sect ion (rz). 

Accept ing the condition of comple te  p las t ic i ty  ( I - Iaar-K~rm~n)  ~0 = ~1 =~2 and a p las t ic  mode of flow c o r -  
responding to the edge of the T r e s c a  p r i s m  

(r 2 _ cr3=2K ' ( 4 )  

we obtain an e x p r e s s i o n  for the c i r c u m f e r e n t i a l  s t r e s s  

ere=or + K. (5) 

The e x p r e s s i o n s  (3) and (5) enable  us to r ewr i t e  the s y s t e m  of equations (2) with four  unknowns in the 
f o r m  of a s y s t e m  of two equations with two unknown functions g and a : 

O(r/Or=K sin 2a �9 02~/Or - -  K cos 2~ �9 02~/Oz q- K( I  - -  cos 2a),'r --  OK, c)r cos 2~ --  OK;Oz sin 2a; 
(6) 

Og/Oz=OK/Oz cos 2a - -  OK~Or sin 2a --  K sin 2 ~ . 0 2 ~ / 0 z - -  K cos 2a.O2a/Or - -  K sin 2a/r. 

The analy t ica l  solution of both (2) and (6) in genera l  f o r m  encounters  se r ious  diff icul t ies  of a m a t h e m a t -  
ical  nature;  in solving applied p r o b l e m s  it  is t he re fo re  of no smal l  impor t ance  to be in posses s ion  of approx i -  
ma te  methods  of solving the s y s t e m  (6). 

In the m a j o r i t y  of  cons t ruc t ions  of h i g h - p r e s s u r e  appara tus ,  the c o m p r e s s i o n  is applied to m a t e r i a l s  
having a median  plane pe rpend icu la r  to the d i rec t ion in which the p lungers  approach  one another .  The s y s t e m  
of equations (6) for  points in the median  plane becomes  v e r y m u c h  s imp le r  on being e x p r e s s e d  in a s y s t e m  of 
coord ina tes  in which the r0  plane coincides  with the median plane in question: 
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0(~ + K) /Or= - -  KO2~z/Oz; 0(~ - -  K)/Oz = O, 

s ince  in the median  plane a =  0, 3 2 a / O r  = 0. 

The r e s u l t a n t  s y s t e m  of equat ions i s  equivalent  to the one equation 

0(~ + K) 'Or= - -  KO2a/Oz 

with two unknowns ~ and c~. 

In o r d e r  to find the unknown ~ we m u s t  know the function ~. F r o m  the boundary condi t ions we may de-  
t e r m i n e  the quant i ty  A by which the angle 2~ v a r i e s  on va ry ing  z f rom 0 to H/2 ,  

A =  - -  (arctg (rc/Kc) --  2~), 

where  f l = a r c t a n  0 / 0 r .  (H/2) is the angle  made by the tangent  to the p ro f i l e  of the anvil  with the pos i t ive  d i -  
r ec t ion  of the r axis  and K c is  the s h e a r  y ie ld  s t r e s s  of the c o m p r e s s e d  m a t e r i a l  a t  i ts  coW.act with the phmger.  

An unknown fea ture  is the way in which the angle 2oz v a r i e s  f rom 0 to A as  z v a r i e s  f rom 0 to H / 2 .  In 
th is  p a p e r  we shal l  e x p r e s s  the mode of v a r i a t i o n  by means  of a s e l ec t ed  function 2~ = f(z). The fo rm of the 
s e l ec t ed  function 2~ = f(z) a l so  d e t e r m i n e s  the nonuni formi ty  in the flow (yield) of the c o m p r e s s e d  m a t e r i a l  
along the z coord ina te .  The s e l ec t ed  function 2~ = f(z) should be such as  to a g r e e  with ex i s t ing  solut ions r e -  
la t ing to the p r o b l e m  of the c o m p r e s s i o n  of p l a s t i c  so l ids .  

In solving the p rob l em of the c o m p r e s s i o n  of a s t r i p  of cons tant  height  a l i n e a r  dependence of the shea r  
component  on the coord ina te  z was obtained in [6], i .e . ,  

~rz= K2z /H .  

The l i nea r  dependence of the shea r  component  on the z coord ina te  in the case  of the c o m p r e s s i o n  of a s t r i p  of 
constant  th ickness  c o r r e s p o n d s  to a r e l a t ionsh ip  between the angle 2~ and the z coord ina te  of the fo rm (2z /H) ,  
i . e . ,  

2a -- arcsin (2z/H). (7) 

Assuming  that  the angle 2c~ v a r i e s  with z in a c c o r da nc e  with the a r c s i n  ( 2 z / H )  law for  any inc l ina t ions  
of the contact  su r f ace ,  we may  e x p r e s s  the t r ac t ion  2~ =f(z) in the fo rm 

Evalua t ing  the de r iva t ive  

arcsin (2: / H) A arcsin (2z/H). 
2c~ : A arcsin (2H / H2) ~ .~ / 2 

02o; A '2/H 
Oz n/2 ] / t  -- (2: / H) 2 

and subs t i tu t ing  i ts  value  at  z = 0 into Eq. (7), we obtain the o r ig ina l  equ i l ib r ium equation in s t r e s s  form as  
fol lows:  

0((~ 4- K) /Or= - -  K[A'(~:2)]2H. (8) 

F o r  the c o m p r e s s i o n  of an ideal  p l a s t i c  m a t e r i a l  (K=const )  between plane anvi l s ,  subjec t  to the boundary con-  
di t ion r K = K, we have 

A= -- ~/2 

and Eq. (8) in the form 0ff/0r=0p/0r =K2/K coincides with Eq. (i) of [3]. For the compression of an ideal 
plastic material between the profiled ends of the plungers, subject to the same boundary condition rK=K , Eq. 
(8) becomes 

O(r/Or=@,@" K[(a/2 --  2~)/.~/212H. 

The final fo rm of Eq. (8) is  d e t e r m i n e d  by the form of K(~) fo r  the s h e a r  y ie ld  s t r e s s  of the c o m p r e s s e d  
m a t e r i a l .  

In our present analysis, the expression for the shear yield stress of the compressed material is derived 
from the concept of the generalized ideally plastic material, such as we take the compressed solid to be. The 
concept of an ideally plastic generalized solid was introduced in [6] after considering the envelopes of the 
Mohr circles for the greatest principal stresses. As envelopes of the Mohr circles we took straight lines in- 
clined to the cr axis at an angle of p = -arctan 5 where 5 is the internal-friction coefficient of the compressed 
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m a t e r i a l .  F r o m  pu re l y  g e o m e t r i c a l  cons ide ra t ions  the expres s ion  for  the shea r  yield s t r e s s  K a s s u m e s  the 
following form: 

K=Ko cos p § a sin p, 

where  K 0 is the s h e a r  yield s t r e s s  a t  a t m o s p h e r i c  p r e s s u r e .  The values  of K 0 and p were  de te rmined  f r o m  
the data  p r e s e n t e d  in [7, 8]. 

Equation (8) m a y  now be solved subjec t  to the boundary conditions genera l ly  accepted  in the theory  of 
the p r e s s u r e  t r e a t m e n t  of m e t a l s ,  which a r e  jus t i f ied exper imen ta l ly .  On the f r ee  su r f ace s  the normal  and 
tangent ia l  s t r e s s e s  a r e  taken as  equal to zero .  On the contac t  su r f aces  we dis t inguish th ree  zones , each  having 
i ts  own c h a r a c t e r i s t i c  laws governing the va r i a t ion  of the tangential  f r ic t ional  fo rces :  a sl ip zone adjacent  to 
the f ree  su r face  of the solid,  in which the contac t  f r ic t ional  fo rce  is de te rmined  by the Coulomb law (the tan-  
gential s t r e s s e s  a r e  p ropor t iona l  to the n o r m a l  s t r e s s e s ) ;  a zone of re ta rda t ion ,  in which the contact  f r ic t ional  
fo rce  is equal to the shea r  s t r e s s  of the c o m p r e s s e d  m a t e r i a l  in i ts  l imi t ing  s ta te  (~K = K cos  p); a stagnation 
zone a t  the point of flow separa t ion ,  in which the contact  s t r e s s  fal ls  to zero.  The s ize  of the end (slip) zone 
in the absence  of lubr icant  on the contact  s u r f ace s  is  of the o r d e r  of the th ickness  of the c o m p r e s s e d  layer ;  
only a s l ight  e r r o r  is  c r e a t e d  by neglect ing this zone and cons ider ing  that  the zone of r e t a rda t ion  begins i m -  
med ia t e ly  a t  the initial  point of the contac t  su r face .  F o r  the r e t a rda t ion  zone Eq. (8) t akes  the f o r m  

0~ ~,'=:[(K0 cos p - ' - ~  ~i,~ ! ~ ) ( 1 -  si~ p)][(m'2 + p -  2~)/a/2] 21H. 

In the s tagnat ion zone lying in the cen t ra l  p a r t  of  the c o m p r e s s e d  solid we took the usual  re la t ionship  for  
the tangential  fo rces  of f r ic t ion  TK= ( r / r 0 ) K  cos  p, where  r 0 is  the coordinate  co r respond ing  to the beginning 
of the s tagnat ion zone. Equation (8) then t akes  the f o r m  

arcsin sin ~-~ :- 0~ 1(. cos ~., -:- ~ sin ,o , - '2 
ur l-:-sinp n . _'~ I I "  

On the bas i s  of  expe r imen ta l  data regard ing  the c o m p r e s s i o n  of m a t e r i a l s  between plane s labs  it was 
e a r l i e r  [9] p roposed  that  r 0 =H. In the case  of p rof i led  anvi ls  it is  difficult  to es tab l i sh  the coordinates  of the 
beginning of the stagnation zone on the basis  of  the r ecommenda t ions  made  in [9]. In the p r e s e n t  ana lys i s  we 
de t e rmined  the beginning of the stagnation zone by compar ing  the d isplaced volume and the t r a n s m i s s i o n  c a -  
pac i ty  of the l a t e r a l  su r face  for  the value of r under  cons idera t ion .  The value of the d isp laced  volume was 
cr2Vz where  v z is  the r a t e  of r e l a t ive  approach  of the p lungers  in the p r e s s u r e  device;  the t r a n s m i s s i o n  c a -  
paci ty  of the l a t e r a l  su r f ace  for  the s a m e  value of r is  2r  where  v r is  the rad ia l  flow ve loc i ty  ave raged  
with r e s p e c t  to height. If the d isp laced  volume exceeds  the t r a n s m i s s i o n  capaci ty  for  the value of r under  
cons idera t ion  (i .e. ,  vr2Vz > 2r  the c o m p r e s s e d  sol id is  e m b r a c e d  by the flow over  i ts  whole height and the 
sec t ion  under  cons idera t ion  l ies  outside the s tagnat ion zone. In the opposi te  s i tuat ion (r < 2r r) the c o m -  
p r e s s e d  l aye r  is not subjec t  to the flow ove r  i ts  en t i r e  height, but only in the middle p a r t s  of the layer ;  this  
c r o s s  sect ion accord ing ly  l ies  within the stagnation zone. The coord ina tes  of the boundary of the stagnation 
zone a r e  de t e rmined  by equat ing the d isp laced  volume to the t r a n s m i s s i o n  capac i ty  of the l a te ra l  sur face  for  
the value of r under  cons idera t ion ,  i .e . ,  cr~v z = 2r r .  

F o r  reg ions  of the c o m p r e s s e d  l aye r  c lose  to i ts  cen t ra l  sect ion we m a y  take Vr=V z. Hence in o rde r  to 
de t e rmine  the coord ina tes  of the beginning of the stagnation zone it is suff icient  to compa re  the a r e a  of the 
cross sect ion  pe rpend icu l a r  to the d i rec t ion of mutual  approach  of the p lungers  with that  of the la te ra l  su r face  
of the c o m p r e s s e d  l a y e r  for  the s a m e  value of coordinate  r .  This  c o m p a r i s o n  yields the following express ion  
fo r  the coordinate  of the boundary of the s tagnat ion zone: 
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1" o -  2 t I ( r o ) .  

F r o m  the s a m e  cons idera t ions  the coord ina tes  of the boundary of the s tagnat ion zone in the case  of plane 
flow a r e  given by x 0 = H(x0); this  a g r e e s  with the e a r l i e r  r e commenda t ions  [9] for  the c o m p r e s s i o n  of ma te r i a l  
by plane anvi ls .  Af te r  de te rmin ing  the a v e r a g e  s t r e s s  a, nil the components  of the s t r e s s  and p r e s s u r e  p = ~ +  
K / 3  in the median  plane of the c o m p r e s s e d  solid m a y  be de te rmined .  

F r o m  ~ e  p r e s s u r e  dis t r ibut ion in the median  plane of the c o m p r e s s e d  l aye r  we may  now de te rmine  the 
r equ i red  s t r e s s  N and plot a ca l ibra t ion  curve  N = f(P0), where  P0 is the p r e s s u r e  in the cen te r  of the c o m p r e s s e d  
layer .  

Expe r imen ta l  and theore t ica l  r e su l t s  r e l a t ing  to the ca l ib ra t ion  curve of a pa r t i cu l a r  f o r m  of the p r e s -  
sure  devices  desc r ibed  in [4, 5], based on the equi l ibr ium equation (4) e x p r e s s e d  in s t r e s s  form,  a r e  p resen ted  
in Fig. 1; we see  that  the d i f ference  between the expe r imen ta l  and theore t ica l  ca l ibra t ion  curves  (curves  1 and 
2, respec t ive ly)  is no g r e a t e r  than 7-8% for  p r e s s u r e s  up to 90 kba r  (the t e s t s  extending to 100 kbar) ,  and this 
m a y  be r ega rded  as  sa t i s fac to ry .  The d i f ference  between calculat ion and expe r imen t  above 90 kbar  may  be 
due to some effect of plunger deformation not taken into account in the present analysis. 
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